industrial grade titanium dioxide manufacturer

Looking ahead to 2023, titanium dioxide will play a key role in various industries. The growth potential of this chemical is huge, and companies like Hebei Caiqing Material Technology Co., Ltd. are well positioned to meet the changing demands of the market. With its individual customization services and dedication to research and development, the company is well-positioned to meet the growing demand and contribute to the advancement of titanium dioxide applications worldwide. Whether in coatings or plastics, titanium dioxide brings innovation, protection and improved product performance to a wide range of customers around the world.

...

Iluka Resources is one of the largest producers of rutile in the world, with mines in Australia and Sierra Leone. The company's rutile production is primarily used for the manufacture of titanium dioxide pigments, which are used in a wide range of applications including paints, plastics, and paper. Iluka Resources is also a major supplier of zircon, another mineral used in the production of ceramics and refractory materials.

...

One of the key reasons why anatase titanium dioxide is favored by coatings manufacturers is its superior UV resistance. This makes it an ideal ingredient for exterior coatings, as it helps protect surfaces from the damaging effects of the sun's ultraviolet rays. Additionally, anatase titanium dioxide is known for its high thermal stability, which enables coatings to withstand extreme temperatures without losing their effectiveness.

...

While IARC listed titanium dioxide as “possibly carcinogenic to humans,” they also add that “there is inadequate evidence in humans for the carcinogenicity of titanium dioxide.” Of the four human studies that they reviewed, only one showed a potential risk for occupational workers inhaling titanium dioxide particles and lung cancer, while the other three showed no risk for cancer at all. And it’s key to note that IARC did not assess the effects of titanium dioxide found in foods.

...

In conclusion, the versatility and biocompatibility of titanium dioxide make it a promising material for various medical applications. Its photocatalytic, antioxidant, and drug delivery properties make it a valuable tool for developing new treatments and preventing diseases. As research continues to explore the potential of titanium dioxide in medicine, we can expect to see more innovative uses of this remarkable compound in the years to come.

...

At present, the domestic wet zinc smelting mainly adopts the roasting-leaching-electrowinning production process, and the zinc content in the acid leaching residue is generally 8-15%, some up to 20%, and the sulfur mass fraction is 6-12%, of which sulfuric acid The root mass fraction is 15-30%, mainly in the form of 0^0 4 (in this ammoniatic environment, the leaching rate of sulfate leaching in multiple stages can reach 70%). The zinc in the acid leaching residue is mainly in the form of ZnFe 2 0 4 . In order to recover these zinc, the treatment methods are currently available in the fire method and the wet method. The fire method is the rotary kiln evaporation method (Wilz method) and the fumigating furnace evaporation method. . The wet method has hot acid leaching or high temperature pressure leaching. The fire treatment process is long, the equipment maintenance is large, the investment is high, the working environment is poor, and a large amount of coal or metallurgical coking coal is consumed, which has low efficiency and large environmental pollution. Therefore, it is usually leached by hot acid or high-pressure leaching. These methods still have the disadvantages of: 1 consumption of a large amount of acid, low leaching rate, due to the large amount of calcium sulfate, calcium sulphate and other ultrafine particles to isolate the zinc oxide particles, resulting in Electrolytic zinc enterprises are difficult to leach in acid environment, and the second weak acid leaching is not meaningful because the recovery rate is too low. 2 If leached with strong acid, although ZnFe 2 0 4 is destroyed, the leaching rate is improved, but the iron leaching rate is also high (up to 60%). The pressure of iron removal is large, and more reagents are consumed. 3 High temperature and high pressure equipment is corroded. Serious, complicated equipment investment; 4 high operating costs, poor economic returns. 5 The last slag discharged is acid leaching residue, which brings new pollution to the environment. It has to be cured and landfilled, which not only pollutes the environment, but also wastes resources.

...
{随机栏目} 2025-08-14 20:55 1699